Master examination

„Materials Science of Steel“

03.08.2017

Name, first name:

Matriculation number:

Declaration: I am healthy and able to take part in the examination.

Signature:

<table>
<thead>
<tr>
<th>Task</th>
<th>Points:</th>
<th>Achieved Points:</th>
<th>Points after review (additional points)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>7.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>8.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>9.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td>100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

You need 44% to pass the examination.
Task 1 Tensile testing I 6 Point(s)

Explain the following characteristic values determined from tensile tests, briefly. (6 Points)

i) R_{eH},

ii) R_{eL},

iii) R_m

iv) $R_{p0.01}$

v) n-value

vi) r-value
Task 2 Tensile testing II 7 Point(s)

a) Sketch the stress-strain-curve for an IF-steel (Steel without solute interstitial atoms) and label the characteristic values. Furthermore, indicate the regions of homogenous and inhomogenous deformation. (4,5 Points)

b) What is the maximum load that can be applied on a specimen before permanent deformation occurs? What is characteristic for this load? (2,5 Points)
Task 3 Hot tensile test 7.5 Point(s)

The high temperature behaviour during continuous casting of steel can be described by high temperature tensile tests.

a) Define the zero ductility temperature (T_{ZD}), the zero strength temperature (T_{ZS}) and the hot crack tendency in the temperature interval (ΔT_o). (3 Points)

b) Sketch the correlation between the reduction of area and the force during solidification of steels in the continuous casting process with the help of the diagrams in Appendix 1 for a temperature region ranging from 800°C to T_{liq}. (4.5 Points)

Appendix 1

<table>
<thead>
<tr>
<th>Force, F</th>
<th>Reduction of area, Z</th>
</tr>
</thead>
</table>

Testing temperature, °C
Task 4 Bake-hardening 3 Point(s)

Sketch the influence of dissolved carbon in ferrite on the yield strength for the following two heat treatments in Appendix 1.

a) 2% deformation and annealing at 170°C for 20 minutes (bake-hardening) (1 Point)
b) annealing at 100°C for 2 hours (artificial aging) (1 Point)

Appendix 1

![Graph showing yield strength vs. dissolved carbon in ppm]

<table>
<thead>
<tr>
<th>Dissolved carbon in ppm</th>
<th>Yield Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>

(c) State the definition to calculate the bake-hardening-effect. (1 Point)

\[BH_2 = \text{[in MPa]} \]
Task 5
Strengthening mechanisms
10 Point(s)

a) It is possible to increase the strength of steel by using various strengthening mechanisms. Complete the **Table 1** by indicating the approximate proportionality for the strength increase for each of the mechanisms. Please also list all the parameters in the equation. (4 Points)

Table 1

<table>
<thead>
<tr>
<th>No.</th>
<th>Mechanism</th>
<th>Strengthening</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Dislocation strengthening</td>
<td>(\sim G \rho^{1/2})</td>
<td>(G) = shear modulus; (b) = Burger’s vector; (\rho) = dislocation density</td>
</tr>
<tr>
<td>2.</td>
<td>Solid solution strengthening</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Grain refinement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Precipitation strengthening</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Multi-phase strengthening</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
b) Interstitial elements like C and N cause a high increase in the strength of ferrite in steels, even when added in very small amounts. However, to cause a similar increase in the strength of austenite, much higher amounts of C and N are necessary. Why is that so? Explain briefly. (1 Point)

c) Martensite is a unique transformation product in steel, in which several strengthening mechanisms are active simultaneously. Name at least three strengthening mechanisms in Fe-C martensite. (3 Points)
d) Precipitation strengthening is a strengthening mechanism, often used in steels. In this method, particles of a certain size range are used to increase the strength of steel. Explain the influence of the precipitate size (particle size) on the strength increase of steels which can be seen in figure 1. Name the interaction mechanisms before and after the peak (maximum strength increase). What is the approximate precipitation size to obtain the maximum strength increase? (2 Points)

Figure 1

![Diagram showing the relationship between particle diameter and increase in strength](image-url)
Task 6
Strengthening mechanisms
4 Point(s)

a) The yield strength of steels can be increased by solid solution strengthening. Appendix 1 shows the effect of content of different alloying elements on the yield strength of ferritic steels. Indicate which line corresponds to the following alloying elements: i) P, ii) Si, iii) C, iv) Mn (2 Points).

b) Which alloying element is the most favorable for solid solution strengthening? Which alloying elements should be avoided to strengthen steel? Give a short explanation for each alloying element mentioned in task a) (2 Points)

Appendix 1:

![Graph showing the effect of alloying elements on yield strength](image-url)
Task 7 thermomechanical treatment 7.5 Point(s)

The influence of microalloying elements on the microstructural evolution is dependent on their dissolution and precipitation temperatures. The precipitation temperature controls the size and therefore the effectiveness of the precipitates.

a) Describe the size of particles qualitatively for particles precipitated at 1200°C, 1000°C and 800°C. (3 Points)

b) What is the main effect of the precipitates formed at 1200°C, 1000°C and 800°C? (3 Points)

c) In what amounts (weight%) are microalloying elements added to steels for a thermomechanical treatment? (1 Point)
Vanadium and Niobium can form carbonitrides of type $M(C,N)$.

d) Are these Elements dissolved or precipitated after reheating to a temperature of $1250^\circ C$? (0.5 Points)
Task 8 Fracture mechanisms 5 Point(s)

The fracture mechanisms of bcc steels are temperature dependent.

a) Sketch a stress-temperature-diagram, which can be used to show the switch from ductile to brittle fracture behaviour of bcc-steels. (3 Points)

b) Describe the microscopic appearance of the fracture surface at high and low temperatures, respectively. (2 Points)
Task 9 Charpy impact tests 10 Point(s)

Charpy impact tests can be used to characterize the toughness of steels.

a) Explain the standard charpy impact test (without additional instrumentation). Consider the specimen geometry, measuring technique and further boundary conditions (2 Points).

b) How can you measure the impact energy for a standard charpy impact test? How can you evaluate the impact energy for an “instrumented charpy impact test”? (4 Points)
c) Sketch the measured curves from an “instrumented charpy impact test” for a very brittle and a very ductile steel in one diagram. Label the axes. (4 Points)
Task 10 Fracture mechanic 4 Point(s)

For the fracture mechanics safety analysis, the K-Concept is established.

a) Describe the difference between the stress intensity factor K_I and the fracture toughness K_{IC}. (2 Points)

b) Explain the K-Concept with the correct formulas. (2 Points)
Task 11 Fatigue testing 8.5 Point(s)

The fatigue behaviour of metallic materials is commonly described using S-N curves, also known as Wöhler curves.

a) Sketch a sinusoidal stress-time-curve with exactly two cycles. Mark the following characteristic values (σ_m, σ_a, σ_u and σ_l). (3,5 Points)

b) Sketch the sinusoidal stress-time-curve for the stress ratios R=0 and R=-1. Furthermore, state the equation to calculate the stress ratio R. (2 Points)
c) A nonlinear correlation occurs in the elastic-plastic region for specimens manufactured without notch. Sketch a stabilized hysteresis loop and a cyclic stress-strain curve. How can the cyclic stress-strain curve be determined? (3 Points)
Task 12 Bauschinger-effect 3 Point(s)

a) What is the “Bauschinger-effect” and what is the reason for this effect? (2 Point)

b) What can be done to minimize this effect? (1 Point)
Task 13 Sheet testing I 6 Point(s)

a) Correlate one sheet testing methods for each of the following strain states of a Forming Limit Diagram (FLD). (4 Points)

\[\varepsilon_1 = -\varepsilon_2 \]

\[\varepsilon_1 = -2\varepsilon_2 \]

\[\varepsilon_1 = -\varepsilon_3 \]

\[\varepsilon_1 = \varepsilon_2 \]

b) How is the hole expansion ratio \(\lambda \) be determined? State the required equation and explain all necessary parameters. (2 Points)
Task 14 Sheet testing II 9.5 Point(s)

Tensile tests have been performed on A_{30} flat tensile test specimens. The gauge length and the width of the specimen has been measured before and after testing. The determined values are given in Appendix 1.

Appendix 1

| 6.00 mm | 30.00 mm | 5.26 mm | 36.03 mm | 5.22 mm | 36.02 mm | 5.19 mm | 36.03 mm |

a) Calculate the logarithmic strain in all three directions for all three experiments based on the values from Appendix 1. State the required equations. (2.5 Points)

b) Calculate the vertical anisotropy for material 1 and state the required equation. (1.5 Points)
c) The testing direction of the specimens was longitudinal (0°), transverse (90°) and diagonal (45°) to the rolling direction as indicated in appendix 1. Calculate the mean and the planar anisotropy and state the required equations. (3 Points)

d) Which two conclusions according to the formability can be drawn for the mean and vertical anisotropy? (1.5 Points)
e) Two additional materials have been tested. The determined mean and planar anisotropy for these materials are summarized in appendix 2. Which material is the most suitable for deep drawing? Explain your answer briefly. (1 Point)

Appendix 2

<table>
<thead>
<tr>
<th>Material</th>
<th>Mittlere Anisotropie</th>
<th>planare anisotropie</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean anisotropy</td>
<td>planar anisotropy</td>
</tr>
<tr>
<td>Material 2</td>
<td>0.9</td>
<td>0.25</td>
</tr>
<tr>
<td>Material 3</td>
<td>1.6</td>
<td>0.1</td>
</tr>
</tbody>
</table>
Task 15 High temperature properties 2 Point(s)

The mechanical properties of steels have a high strain rate dependence at high temperatures. A strain rate – stress-curve is shown in the following diagram.
Indicate the strain rate – stress curve for a material with
a) a larger grain size (1 Point) and
b) a lower Young’s modulus (1 Point)
in the given diagram.
Task 16 Metallography 3 Point(s)

Metallography is used to get important knowledge about non-metallic inclusions in steels.

Explain the characteristics of Manganese sulfide and Aluminium oxide after cold rolling steels. Therefore, sketch the above mentioned inclusions after cold rolling in the figures in Appendix 1 and explain the shape of the inclusions. (3 Points)

Appendix 1

Aluminiumoxid / Aluminium oxide Mangansulfid/ Manganese sulfide

ND: normal direction / Blech Normalenrichtung
RD: rolling direction / Walzrichtung
Task 17
Electron microscopy

4 Point(s)

a) What reactions can occur when electrons penetrate the sample surface? Name and describe three kinds of radiations occurring the penetration of electrons on the surface of the specimen. (3 Points)

b) Explain the differences in the specimen preparation for SEM and TEM investigations resulting from the measuring principle of each electron microscope. (1 Point)