Advanced Master Course
Process Technology of Metals
(Part: Ferrous Process Metallurgy)
Prof. Dr.-Ing. D. Senk

23-03-2009 (1/2009)

Place: 1400|222 (H222) Intzestraße 1 (IEHK),
Time: 08:00-10:00

<table>
<thead>
<tr>
<th>Task</th>
<th>Points (max.)</th>
<th>Points</th>
<th>Signature</th>
<th>Approval date</th>
<th>Final points (total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td>Total after approval:</td>
</tr>
</tbody>
</table>

Institut für Eisenhüttenkunde
Rheinisch-Westfälische Technische Hochschule Aachen
Task 1: Pelletizing and Sintering 3 Points

1.1 Pellets production can be divided into 2 distinct stages:
Stage 1: Green pellet formation
Stage 2: Heat treatment, “firing”

(a) Give methods which can be used for each stage. (1.0 point)
(b) What is the main function of bentonite in the first stage? (0.5 point)
(c) Give the range of firing temperature in the second stage. (0.5 point)

1.2 Illustrate the difference between “Acidic sinter” and “Fluxed sinter”. (1.0 point)
Task 2: Blast Furnace

3 Points

2.1 Write the chemical reactions of (a) indirect reduction and (b) direct reduction of iron oxides in blast furnace.

(1.0 point)

2.2 What are typical temperature and chemical composition of raceway gas?

(1.0 point)

2.3 What is PCI in blast furnace operation? What is the influence of PCI on the blast furnace process?

(1.0 point)
Task 3: Oxygen Steelmaking 4 Points

In the converter hot metal is refined to steel. A charge of hot metal has the following chemical analysis:

<table>
<thead>
<tr>
<th>Element</th>
<th>C</th>
<th>Si</th>
<th>Mn</th>
<th>P</th>
<th>O₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass %</td>
<td>4.45</td>
<td>0.32</td>
<td>0.34</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>M wt. (kg/kmole)</td>
<td>12</td>
<td>28</td>
<td>55</td>
<td>31</td>
<td>32</td>
</tr>
</tbody>
</table>

Assumption: at the end of the blowing process the value of each element has to be 0.05%, there is no post combustion.

3.1 Write down the oxidation formula of C and P. (1.0 point)

3.2 Calculate the amount of oxygen in kg/tHM needed for de-siliconization and write down the corresponding equations. (1.0 point)

3.3 What are the tasks of lime in steelmaking? (1.0 point)

3.4 In which process [N] content is higher and why?
 (a) BOF
 (b) EAF (1.0 point)
Task 4: Slags and Fluxes

4.1 Give a general definition of “Slag basicity”.
(0.5 point)

4.2 What is the basicity of slag consisting of 50% CaO, 30% SiO$_2$ and 20% MgO?
(0.5 point)

4.3 What are the tasks of ladle top slag? (Give at least 2 items)
(1.0 point)

4.4 What is the main function of the so-called “Flux” in iron and steel industries?
(Give at least 2 examples)
(1.0 point)

4.5 FeO containing slag must be reduced in terms of oxygen activity. By which method can that be done? (Give the chemical reaction formula)
(1.0 point)
Task 5: Electric Steelmaking 3 Points

5.1 What are the advantages of foaming slag in Electric Arc Furnace process? (1.0 point)

5.2 Explain the procedure and also write down chemical reactions for generation of foaming slag in electric arc furnace. (1.0 point)

5.3 What are benefits of DRI used in electric arc furnace process? (Give at least 2 items) (1.0 point)
Task 6: Secondary Metallurgy (Ladle Metallurgy) 4 points

6.1 What are the tasks of “Secondary Metallurgy” in view of chemical measures and in view of physical measures? (1.0 point)

6.2 Give the preconditions for an effective de-sulphurization. (Give at least 2 items) (1.0 point)

6.3 Give the equation representing the de-sulfurization reaction of molten steel with lime and give the equilibrium constant for that equation. (1.0 point)

6.4 Give the equation which represents the de-oxidation reaction of molten steel with carbon and show schematically the de-carburization curves at different atmosphere pressures, (use $P_{CO} = 0.1$ and 1.0 bar). (1.0 point)
Task 7: Continuous Casting (CC)

7.1 What are the tasks of continuous casting mould powder?
(Give at least 2 items).

7.2 Describe the term "negative strip time" of mould oscillation.
(Sketch the figure and show equation if necessary).

7.3 What is “Soft Reduction”?
What is “Liquid Core Reduction”?

7.4 Give the size range of "Micro-inclusion".

7.5 What is the “Leidenfrost” temperature?